雑学

モンティ・ホール問題を知っていますか?

 

モンティ・ホール問題は、モンティ・ホールという人が司会を務めるアメリカのゲームショー番組で行われたゲームに関する論争に由来する問題です。

「直感で正しいと思える解答と、論理的に正しい答えが異なる問題」のいい例です。

 

【ゲームの概要】

ここに3つのドアがあります。

1つのドアの向こうには景品の新車があります。

残りの2つのドアの向こうには、ハズレを意味するヤギがいます。

 

プレイヤーは、まず最初に1つのドアを選びます。選ぶだけでここではドアを開けません。

つぎに、司会者のモンティが残りのドアのうち1つを開けてヤギを見せます。

(司会者は景品がどのドアの向こうにあるか知っています)

ここでプレイヤーは、開けるドアを最初に選んだものから変えてもよい、と司会者に言われます。

プレイヤーはドアを変更するべきでしょうか?

 

 

あるニュース雑誌でコラムを担当するサヴァントは、「正解は『ドアを変更する』だ。

なぜなら、ドアを変更した場合には景品を当てる確率が2倍になるからだ」と回答し、これに反対する投書が一万通を超え、プロの数学者も巻きこむ大論争に発展しました。

 

 

いかがでしょうか?

 

当時、多くの人々が「ドアを変えても確率は変わるはずがない、同じだ」と考えました。

しかし、正しいのはコラムニストのサヴァントだったのです。

 

 

【ドアを変更すれば当たる確率が倍になる理由】

まず、最初に選んだドアが当たりである確率は、1/3です。

そして、モンティが残りのドアを開けたあと、ドアを変更しないのであれば、モンティがドアを開けようが開けまいが変わることなく、当たる確率は1/3です。

もし最初に選んだドアがハズレであれば、そのドアとモンティが開けたドアの両方がハズレなので、変更すれば確実に当たります。すなわち、最初に選んだドアがハズレの確率=ドアを変更した場合に当たる確率です。

ところで最初に選んだドアがハズレである確率は、2/3です。

だから、ドアを変更した場合に当たる確率は2/3であり、サヴァントの回答が正しいことになります。

 

ちなみに、最初に選んだドアか残りのドアのどちらかが当たりなのだから、変更すれば当たる確率は1/2だ、というのは間違いです。

そうなるのは、最初からハズレのドアが1つ開けられている状態から始まる場合であり、それならば変わらず1/2です。

 

 

この問題は、確率論におけるベイズの定理の「事後確率」(条件付き確率の一種)の例と見なせます。

「条件付き確率」というのは、ある事象 B が起こるという条件下での別の事象 A の確率のことをいいます。

 

ちなみに、モンテカルロ法でシミュレーションを行うと、見事に「変更すると2倍になる」という結果が出ます。

 

なんとなく感覚で出す答えと、論理的に導かれる答えとが全く異なるこの問題。

人間の感覚はあてにならない、と考えるか、論理ってのはいったい何なんや、と考えるかはその人しだい。

 

皆さんは、どうですか?

 

文章:増何臍阿

 

画像提供元:https://visualhunt.com/f7/photo/3456216966/00bd8de9b5/

関連記事

  1. 「ソウメンカボチャ」の料理法
  2. 世界の国と国旗☆第32回目 オーストリア共和国
  3. 第6回☆世界の国と国旗(アラブ首長国連邦編)
  4. 世界の国と国旗☆第66回目 コンゴ共和国
  5. 世界の国と国旗☆第39回目 カナダ
  6. 世界の国と国旗☆第12回目 アンティグア・バーブーダ
  7. 世界の国と国旗☆第35回目 ガイアナ共和国
  8. 世界の国と国旗☆第52回目 ギリシャ共和国

おすすめ記事

【アベンジャーズ】米俳優ジェレミー・レナー、除雪車に轢かれ重傷【ホークアイ】

出典元:https://www.pexels.com/ja-jp/photo/11085902/…

中国地方の中心部:「広島県広島市中区」の観光案内

 JR『広島駅』から北西の『平和大通り』方面、『原爆ドーム』の内側の中区(官庁街と繁…

神戸新聞に「あまうめ城っぷ」の記事が掲載されました!

画像:収穫前の尼崎農業公園の梅の実神戸新聞の2022年8月15日付朝刊に、あまう…

『心には嘘をつけない』―自分の心には、絶対嘘はつけない―

自分の心は…相手に嘘をつく事ができるけど…自…

エッセイ:『確かなものを求めて』

不安をどうしたらいいのだろう、と考えることがあります。生きていく…

新着記事

PAGE TOP